Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Chembiochem ; 25(9): e202400007, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457348

RESUMO

The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.


Assuntos
Técnicas Biossensoriais , Profilinas , Profilinas/metabolismo , Humanos , Optogenética/métodos , Estresse Fisiológico
2.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370612

RESUMO

Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions.

3.
Environ Manage ; 73(2): 354-364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610662

RESUMO

An initial and comprehensive map of ecological regions across the conterminous United States was provided by Omernik in 1987. Because that paper was the most-cited published by the Annals of the American Association of Geographers, we sought to assess and quantify its contribution to science. To do so, we conducted a scientometric analysis to address the following main questions: 1) What are the temporal and spatial citation trends? We expected that Omernik's paper would still be employed 36 years after its publication, and mostly in the United States of America. 2) For what types of environments and organisms has it been applied? Based on its generality, we expected that it had been applied to both terrestrial and aquatic ecosystems. 3) What are the main applications of Omernik's article? We predicted that it would mostly be used for describing and delineating study sites and management areas, as well as for selecting regional reference sites. The number of citations presented a positive temporal increase, indicating its continued applicability. Most papers dealt with aquatic environments, mainly in streams carried out predominantly in the United States of America, as was one of its earliest applications. The usefulness of ecoregions for assessing and managing biotic and abiotic patterns and distributions were the main topics addressed by scientists. Ecoregions have offered a general framework for developing regional expectations and rational regional management policies across large areas, as was their original intent. In addition, ecoregion maps were used for communicating patterns-or the lack of them-to interested scientists, citizens, and decision-makers. That comprehensiveness of Omernik's ecoregion approach has led to its widespread applicability and continued usefulness to a diverse set of scientific and management disciplines.


Assuntos
Ecossistema , Rios , Estados Unidos
4.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873064

RESUMO

The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as cofilin-actin rods and stress granules formed in response to energetic and oxidative stress are closely linked to neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, neurodegenerative disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.

5.
Sci Rep ; 13(1): 14347, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658153

RESUMO

Co-occurring biodiversity and global heating crises are systemic threats to life on Earth as we know it, especially in relatively rare freshwater ecosystems, such as in Iran. Future changes in the spatial distribution and richness of 131 riverine fish species were investigated at 1481 sites in Iran under optimistic and pessimistic climate heating scenarios for the 2050s and 2080s. We used maximum entropy modeling to predict species' potential distributions by hydrologic unit (HU) occupancy under current and future climate conditions through the use of nine environmental predictor variables. The most important variable determining fish occupancy was HU location, followed by elevation, climate variables, and slope. Thirty-seven species were predicted to decrease their potential habitat occupancy in all future scenarios. The southern Caspian HU faces the highest future species reductions followed by the western Zagros and northwestern Iran. These results can be used by managers to plan conservational strategies to ease the dispersal of species, especially those that are at the greatest risk of extinction or invasion and that are in rivers fragmented by dams.


Assuntos
Ecossistema , Calefação , Animais , Biodiversidade , Clima , Planeta Terra , Peixes
6.
Knowl Manag Aquat Ecosyst ; 424(19): 1-16, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37593206

RESUMO

Both native and non-native taxa richness patterns are useful for evaluating areas of greatest conservation concern. To determine those patterns, we analyzed fish and macroinvertebrate taxa richness data obtained at 3475 sites collected by the USEPA's National Rivers and Streams Assessment. We also determined which natural and anthropogenic variables best explained patterns in regional richness. Macroinvertebrate and fish richness increased with the number of sites sampled per region. Therefore, we determined residual taxa richness from the deviation of observed richness from predicted richness given the number of sites per region. Regional richness markedly exceeded average site richness for both macroinvertebrates and fish. Predictors of macroinvertebrate-genus and fish-species residual-regional richness differed. Air temperature was an important predictor in both cases but was positive for fish and negative for macroinvertebrates. Both natural and land use variables were significant predictors of regional richness. This study is the first to determine mean site and regional richness of both fish and aquatic macroinvertebrates across the conterminous USA, and the key anthropogenic drivers of regional richness. Thus, it offers important insights into regional USA biodiversity hotspots.

8.
J Anim Ecol ; 92(6): 1176-1189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994670

RESUMO

Human land-use change is a major threat to natural ecosystems worldwide. Nonetheless, the effects of human land-uses on the structure of plant and animal assemblages and their functional characteristics need to be better understood. Furthermore, the pathways by which human land uses affect ecosystem functions, such as biomass production, still need to be clarified. We compiled a unique dataset of fish, arthropod and macrophyte assemblages from 61 stream ecosystems in two Neotropical biomes: Amazonian rainforest and Uruguayan grasslands. We then tested how the cover of agriculture, pasture, urbanization and afforestation affected the taxonomic richness and functional diversity of those three species assemblages, and the consequences of these effects for animal biomass production. Single trait categories and functional diversity were evaluated, combining recruitment and life-history, resource and habitat-use, and body size. The effects of intensive human land-uses on taxonomic and functional diversities were as strong as other drivers known to affect biodiversity, such as local climate and environmental factors. In both biomes, the taxonomic richness and functional diversity of animal and macrophyte assemblages decreased with increasing cover of agriculture, pasture, and urbanization. Human land-uses were associated with functional homogenization of both animal and macrophyte assemblages. Human land-uses reduced animal biomass through direct and indirect pathways mediated by declines in taxonomic and functional diversities. Our findings indicate that converting natural ecosystems to supply human demands results in species loss and trait homogenization across multiple biotic assemblages, ultimately reducing animal biomass production in streams.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biomassa , Rios/química , Biodiversidade
9.
Bioconjug Chem ; 34(1): 204-211, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36379001

RESUMO

Protein kinase A (PKA) is a biologically important enzyme for cell regulation, often referred to as the "central kinase". An immobilized PKA that retains substrate specificity and activity would be a useful tool for laboratory scientists, enabling targeted phosphorylation without interference from downstream kinase contamination or kinase autophosphorylation in sensitive assays. Moreover, it might also provide the benefits of robustness and reusability that are often associated with immobilized enzyme preparations. In this work, we describe the creation of a recombinant PKA fusion protein that incorporates the HaloTag covalent immobilization system. We demonstrate that protein fusion design, including affinity tag placement, is critical for optimal heterologous expression in Escherichia coli. Furthermore, we demonstrate various applications of our immobilized PKA, including the phosphorylation of recombinant PKA substrates, such as vasodilator-stimulated phosphoprotein, and endogenous PKA substrates in a cell lysate. This immobilized PKA also possesses robust activity and reusability over multiple trials. This work holds promise as a generalizable strategy for the production and application of immobilized protein kinases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteínas Quinases , Proteínas Quinases/metabolismo , Fosforilação , Proteínas Recombinantes de Fusão/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
10.
J Environ Manage ; 329: 117111, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566728

RESUMO

Understanding biotic assemblage variations resulting from water diversions and other pressures is critical for aquatic ecosystem conservation, but hampered by limited research. Mechanisms driving macroinvertebrate assemblages were determined across five lakes along China's South-to-North Water Diversion Project, an over 900-km water transfer system connecting four river basins. We assessed macroinvertebrate patterns from 59 sites in relation to water quality, climatic, spatial, and hydrologic factors. Macroinvertebrate density, biomass, and species richness increased from upriver to downriver lakes, and were higher during the water transfer period than in the non-water transfer period. Non-native species including Nephtys sp., Paranthura japonica, Potamillacf acuminata, Capitekkidae spp. and Novaculina chinensis, were distributed along the entire study system, some become dominant in upriver lakes. High species turnover occurred in two upriver lakes. Hydrology and water quality are critical factors in shaping these macroinvertebrate patterns. Hydrological disturbance by water transfer boosted macroinvertebrate abundance during the water transfer period while facilitated non-native species dispersals and increased biotic homogenization. This study indicates the need for: 1) an effective ecosystem monitoring system; 2) unified system management standards; 3) external pollution controls; and 4) limiting the dispersal of non-native species.


Assuntos
Ecossistema , Qualidade da Água , Animais , Invertebrados , Espécies Introduzidas , Monitoramento Ambiental , Hidrologia , Rios
11.
Glob Chang Biol ; 29(2): 355-374, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131677

RESUMO

Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Humanos , Monitoramento Ambiental/métodos , Rios , Peixes , Qualidade da Água , Biodiversidade , Invertebrados
12.
Front Cell Neurosci ; 16: 982074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212686

RESUMO

The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer's disease, Parkinson's disease, and Huntington's disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.

13.
Environ Monit Assess ; 194(10): 793, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109378

RESUMO

The Hyrcanian Forest holds broad leaf forest remnants dating back to the early Cenozoic Era, which once covered a vast area of the North Temperate Zone. Today, many rivers within this region have been altered by human activities and urgently need rehabilitation. In this regard, 35 wadeable rivers including 14 reference and impacted sites were investigated to determine how different human pressures altered riverine landscapes and habitats. Hence, five common human pressures (agriculture, urbanization, aquaculture, dams, aggregate mining) were identified, then the riverine landscape and habitat condition of each site were assessed. At each site, 17 aquatic, riparian, and terrestrial features, including abiotic and biotic substrate types, were investigated. The number and ratio of pressure-influenced channel features and substrate types differed from those in reference sites. Reference sites were dominated by microlithal, mesolithal, and macrolithal abiotic substrates and large wood, algae, and coarse particulate organic matter biotic substrates. Urbanized sites were most altered and dominated by single channels, steep unvegetated riprap banks, and algae substrate. The results provide valuable information for managers and decision-makers to restore riverine ecosystems considering the impaired parameters resulting from human pressures.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental/métodos , Florestas , Humanos , Irã (Geográfico) , Plantas
14.
Ecol Indic ; 141: 109046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991319

RESUMO

Anthropogenic alteration of physical habitat structure in streams and rivers is increasingly recognized as a major cause of impairment worldwide. As part of their assessment of the status and trends in the condition of rivers and streams in the U.S., the U.S. Environmental Protection Agency's (USEPA) National Aquatic Resource Surveys (NARS) quantify and monitor channel size and slope, substrate size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbance activities, and channel-riparian interaction. Like biological assemblages and water chemistry, physical habitat is strongly controlled by natural geoclimatic factors that can obscure or amplify the influence of human activities. We developed a systematic approach to estimate the deviation of observed river and stream physical habitat from that expected in least-disturbed reference conditions. We applied this approach to calculate indices of anthropogenic alteration of three aspects of physical habitat condition in the conterminous U.S. (CONUS): streambed sediment size and stability, riparian vegetation cover, and instream habitat complexity. The precision and responsiveness of these indices led the USEPA to use them to evaluate physical habitat condition in CONUS rivers and streams. The scores of these indices systematically decreased with greater anthropogenic disturbance at river and stream sites in the CONUS and within ecoregions, which we interpret as a response of these physical habitat indices to anthropogenic influences. Although anthropogenic activities negatively influenced all three physical habitat indices in the least-disturbed sites within most ecoregions, natural geoclimatic and geomorphic factors were the dominant influences. For sites over the full range of anthropogenic disturbance, analyses of observed/expected sediment characteristics showed augmented flood flows and basin and riparian agriculture to be the leading predictors of streambed instability and excess fine sediments. Similarly, basin and riparian agriculture and non-agricultural riparian land uses were the leading predictors of reduced riparian vegetation cover complexity in the CONUS and within ecoregions. In turn, these reductions in riparian vegetation cover and complexity, combined with reduced summer low flows, were the leading predictors of instream habitat simplification. We conclude that quantitative measures of physical habitat structure are useful and important indicators of the impacts of human activities on stream and river condition.

15.
Ecol Indic ; 141: 109047, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991318

RESUMO

Rigorous assessments of the ecological condition of water resources and the effect of human activities on those waters require quantitative physical, chemical, and biological data. The U.S. Environmental Protection Agency's river and stream surveys quantify river and stream bed particle size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, and anthropogenic disturbance activities. Physical habitat is strongly controlled by natural geoclimatic factors that co-vary with human activities. We expressed the anthropogenic alteration of physical habitat as O/E ratios of observed habitat metric values divided by values expected under least-disturbed reference conditions, where site-specific expected values vary given their geoclimatic and geomorphic context. We set criteria for good, fair, and poor condition based on the distribution of O/E values in regional least-disturbed reference sites. Poor conditions existed in 22-24% of the 1.2 million km of streams and rivers in the conterminous U.S. for riparian human disturbance, streambed sediment and riparian vegetation cover, versus 14% for instream habitat complexity. Based on the same four indicators, the percentage of stream length in poor condition within 9 separate U.S. ecoregions ranged from 4% to 42%. Associations of our physical habitat indices with anthropogenic pressures demonstrate the scope of anthropogenic habitat alteration; habitat condition was negatively related to the level of anthropogenic disturbance nationally and in nearly all ecoregions. Relative risk estimates showed that streams and rivers with poor sediment, riparian cover complexity, or instream habitat cover conditions were 1.4 to 2.6 times as likely to also have fish or macroinvertebrate assemblages in poor condition. Our physical habitat condition indicators help explain deviations in biological conditions from those observed among least-disturbed sites and inform management actions for rehabilitating impaired waters and mitigating further ecological degradation.

16.
J Biol Chem ; 298(10): 102388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987384

RESUMO

BAR (Bin, Amphiphysin, and Rvs) protein domains are responsible for the generation of membrane curvature and represent a critical mechanical component of cellular functions. Thus, BAR domains have great potential as components of membrane-remodeling tools for cell biologists. In this work, we describe the design and implementation of a family of versatile light-gated I-BAR (inverse BAR) domain containing tools derived from the fusion of the Arabidopsis thaliana cryptochrome 2 photoreceptor and I-BAR protein domains ("CRY-BARs") with applications in the remodeling of membrane architectures and the control of cellular dynamics. By taking advantage of the intrinsic membrane-binding propensity of the I-BAR domain, CRY-BARs can be used for spatial and temporal control of cellular processes that require induction of membrane protrusions. Using cell lines and primary neuron cultures, we demonstrate here that the CRY-BAR optogenetic tool evokes membrane dynamic changes associated with cellular activity. Moreover, we provide evidence that ezrin, an actin and phosphatidylinositol 4,5-bisphosphate-binding protein, acts as a relay between the plasma membrane and the actin cytoskeleton and therefore is an important mediator of switch function. Overall, we propose that CRY-BARs hold promise as a useful addition to the optogenetic toolkit to study membrane remodeling in live cells.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Membrana Celular , Optogenética , Citoesqueleto de Actina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Domínios Proteicos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Extensões da Superfície Celular/química , Optogenética/métodos , Humanos , Células HEK293
18.
Value Health ; 25(6): 890-896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35667779

RESUMO

OBJECTIVES: Since 2020, COVID-19 has infected tens of millions and caused hundreds of thousands of fatalities in the United States. Infection waves lead to increased emergency department utilization and critical care admission for patients with respiratory distress. Although many individuals develop symptoms necessitating a ventilator, some patients with COVID-19 can remain at home to mitigate hospital overcrowding. Remote pulse-oximetry (pulse-ox) monitoring of moderately ill patients with COVID-19 can be used to monitor symptom escalation and trigger hospital visits, as needed. METHODS: We analyzed the cost-utility of remote pulse-ox monitoring using a Markov model with a 3-week time horizon and daily cycles from a US health sector perspective. Costs (US dollar 2020) and outcomes were derived from the University Hospitals' real-world evidence and published literature. Costs and quality-adjusted life-years (QALYs) were used to determine the incremental cost-effectiveness ratio at a cost-effectiveness threshold of $100 000 per QALY. We assessed model uncertainty using univariate and probabilistic sensitivity analyses. RESULTS: Model results demonstrated that remote monitoring dominates current standard care, by reducing costs ($11 472 saved) and improving outcomes (0.013 QALYs gained). There were 87% fewer hospitalizations and 77% fewer deaths among patients with access to remote pulse-ox monitoring. The incremental cost-effectiveness ratio was not sensitive to uncertainty ranges in the model. CONCLUSIONS: Patient with COVID-19 remote pulse-ox monitoring increases the specificity of those requiring follow-up care for escalating symptoms. We recommend remote monitoring adoption across health systems to economically manage COVID-19 volume surges, maintain patients' comfort, reduce community infection spread, and carefully monitor needs of multiple individuals from one location by trained experts.


Assuntos
COVID-19 , COVID-19/epidemiologia , Análise Custo-Benefício , Humanos , Monitorização Fisiológica , Oximetria , Anos de Vida Ajustados por Qualidade de Vida , Estados Unidos
19.
River Res Appl ; 38(4): 639-656, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35602909

RESUMO

Biological monitoring is important for assessing the ecological condition of surface waters. However, there are challenges in determining what constitutes reference conditions, what assemblages should be used as indicators, and how assemblage data should be converted into quantitative indicator scores. In this study, we developed and applied biological condition gradient (BCG) modeling to fish and macroinvertebrate data previously collected from large, sandy bottom southwestern USA rivers. Such rivers are particularly vulnerable to altered flow regimes resulting from dams, water withdrawals and climate change. We found that sensitive ubiquitous taxa for both fish and macroinvertebrates had been replaced by more tolerant taxa, but that the condition assessment ratings based on fish and macroinvertebrate assemblages differed. We conclude that the BCG models based on both macroinvertebrate and fish assemblage condition were useful for classifying the condition of southwestern USA sandy bottom rivers. However, our fish BCG model was slightly more sensitive than the macroinvertebrate model to anthropogenic disturbance, presumably because we had historical fish data, and because fish may be more sensitive to dams and altered flow regimes than are macroinvertebrates.

20.
Medicine (Baltimore) ; 101(9): e28961, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244059

RESUMO

PURPOSE: Pain accounts for up to 78% of emergency department (ED) patient visits and opioids remain a primary method of treatment despite risks of addiction and adverse effects. While prior acupuncture studies are promising as an alternative opioid-sparing approach to pain reduction, successful conduct of a multi-center pilot study is needed to prepare for a future definitive randomized control trial (RCT). METHODS: Acupuncture in the Emergency Department for Pain Management (ACUITY) is funded by the National Center for Complementary and Integrative Health. The objectives are to: conduct a multi-center feasibility RCT, examine feasibility of data collection, develop/deploy a manualized acupuncture intervention and assess feasibility/implementation (barrier/facilitators) in 3 EDs affiliated with the BraveNet Practice Based Research Network.Adults presenting to a recruiting ED with acute non-emergent pain (e.g., musculoskeletal, back, pelvic, noncardiac chest, abdominal, flank or head) of ≥4 on a 0-10-point Numeric Rating Scale will be eligible. ED participants (n = 165) will be equally randomized to Acupuncture or Usual Care.At pre-, post-, and discharge time-points, patients will self-assess pain and anxiety using the Numeric Rating Scale. Pain, anxiety, post-ED opioid use and adverse events will be assessed at 1 and 4 weeks. Opioid utilization in the ED and discharge prescriptions will be extracted from patients' electronic medical records.Acupuncture recipients will asked to participate in a brief qualitative interview about 3 weeks after their discharge. ED providers and staff will also be interviewed about their general perspectives/experiences related to acupuncture in the ED and implementation of acupuncture in ACUITY. RESULTS: Recruitment began on 5/3/21. As of 12/7/21: 84 patients have enrolled, the responsive acupuncture intervention has been developed and deployed, and 26 qualitative interviews have been conducted. CONCLUSION: Successful conduct of ACUITY will provide the necessary framework for conducting a future, multi-center, definitive RCT of acupuncture in the ED. CLINICAL TRIALSGOV: NCT04880733 https://clinicaltrials.gov/ct2/show/NCT04880733.


Assuntos
Terapia por Acupuntura/estatística & dados numéricos , Dor Aguda/terapia , Serviço Hospitalar de Emergência , Manejo da Dor , Terapia por Acupuntura/métodos , Estudos de Viabilidade , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...